Diary of a medical scientist

Jul 15

(Source: proud-atheist, via insidious-effects-of-life)

Jul 14

medblrholic said: Hi! I'm currently studying medical science in australia and i was wondering what's it like working in the hospital laboratory? did you have to do an honours degree because I was told that a bachelor degree is not enough to get a job because in australia a medical scientist occupation is not very stable due to lack of government funding. I intend to get into medicine so research is my backup. nice to meet you by the way!

Hi!
I’m not sure of the system in place in Australian hospitals, but in Ireland you would need an honours degree which has been accredited by the Academy of Medical Laboratory Science. You also need to have completed clinical rotations in an approved hospital before you can work as a medical scientist in a hospital. It’s important to note that you don’t need to do the rotations to work in industrial laboratories, though. The placement in a hospital is only needed if you plan on working on human diagnostic specimens.
I’m sorry if that’s not helpful, it’s just the way it worked out here for me. I must say that I love working where I do. I have been working in a histopathology lab now for almost 2 years and it has been far from boring. There is always something to learn - even people in their late 50s are still doing courses and progressing their careers! Some are even doing histodissection :)

If you want to ask anything else, feel free. I hope my personal experience has helped in some way!

Anonymous said: How do lactose intolerant people while they are babies drink mothers milk ?

Lactose intolerance usually occurs after a baby has been weaned from breast milk to solid food, so it’s usually not a problem. It’s caused by a lack of lactase persistence alleles in their lactase gene. There is, however, a very small population with a condition called congenital lactase deficiency, where they are born without the ability to metabolise lactose in milk. They would not be able to consume the mother’s milk without the typical symptoms of lactose intolerance.

Jul 08

neurosciencestuff:

The anatomy of fear: Understanding the biological underpinnings of anxiety, phobias and PTSD 
Fear in a mouse brain looks much the same as fear in a human brain.
When a frightening stimulus is encountered, the thalamus shoots a message to the amygdala — the primitive part of the brain — even before it informs the parts responsible for higher cognition. The amygdala then goes into its hard-wired fight-or-flight response, triggering a host of predictable symptoms, including racing heart, heavy breathing, startle response, and sweating.
The similarities of fear response in the brains of mice and men have allowed scientists to understand the neural circuitry and molecular processes of fear and fear behaviors perhaps better than any other response. That understanding has spurred breakthroughs in treatments for psychiatric disorders that are underpinned by fear.
Anxiety disorders are one of the most common mental illnesses in the country, with nearly one-third of Americans experiencing symptoms at least once during their lives. There are generalized anxiety disorders and fear-related disorders, which include panic disorders, phobias, and post-traumatic stress disorder (PTSD).  
Emory psychiatrist and researcher Kerry Ressler is on the front lines of fear-disorder research. In his lab at Yerkes National Primate Research Center, he studies the molecular and cellular mechanisms of fear learning and extinction in mouse models. At Grady Memorial Hospital, he investigates the psychology, genetics, and biology of PTSD. And through the Grady Trauma Project, he works to draw attention to the problem of inner city intergenerational violence.
"If you look at Kerry’s work, it can seem like it’s all over the place — he’s got so many studies going on, and he collaborates with so many other scientists," says Barbara Rothbaum, associate vice chair of clinical research in psychiatry and director of the Trauma and Anxiety Recovery Program at Emory. "But they are all pieces to the same puzzle. All his work, from molecular to clinical to policy, fits together and starts telling a story." A Howard Hughes Medical Institute investigator, Ressler was recently elected to the Institute of Medicine — one of the highest honors in the fields of health and medicine. He was named a member of a new national PTSD consortium led by Draper Laboratory. And he recently appeared on the Charlie Rose show’s brain series.
Panic attacks seem to tie the fear-related disorders together, he explained on Charlie Rose. Everyone experiences fear, which evolved as a survival mechanism, but it only rises to a clinical level when people are unable to function normally in the face of it. For instance, PTSD includes not only intrusive thoughts, memories, nightmares, and startle responses, but also the concept of avoidance, which may extend to other areas of the individual’s life.
"There’s a patient I’ve seen who was attacked in a dark alley," Ressler shared on the show. "Initially it just felt dangerous to go out at night, but after a while she grew afraid of men and couldn’t go to that part of town. Then she couldn’t leave her house, and finally, her bedroom. The world got more and more dangerous."

neurosciencestuff:

The anatomy of fear: Understanding the biological underpinnings of anxiety, phobias and PTSD

Fear in a mouse brain looks much the same as fear in a human brain.

When a frightening stimulus is encountered, the thalamus shoots a message to the amygdala — the primitive part of the brain — even before it informs the parts responsible for higher cognition. The amygdala then goes into its hard-wired fight-or-flight response, triggering a host of predictable symptoms, including racing heart, heavy breathing, startle response, and sweating.

The similarities of fear response in the brains of mice and men have allowed scientists to understand the neural circuitry and molecular processes of fear and fear behaviors perhaps better than any other response. That understanding has spurred breakthroughs in treatments for psychiatric disorders that are underpinned by fear.

Anxiety disorders are one of the most common mental illnesses in the country, with nearly one-third of Americans experiencing symptoms at least once during their lives. There are generalized anxiety disorders and fear-related disorders, which include panic disorders, phobias, and post-traumatic stress disorder (PTSD).  

Emory psychiatrist and researcher Kerry Ressler is on the front lines of fear-disorder research. In his lab at Yerkes National Primate Research Center, he studies the molecular and cellular mechanisms of fear learning and extinction in mouse models. At Grady Memorial Hospital, he investigates the psychology, genetics, and biology of PTSD. And through the Grady Trauma Project, he works to draw attention to the problem of inner city intergenerational violence.

"If you look at Kerry’s work, it can seem like it’s all over the place — he’s got so many studies going on, and he collaborates with so many other scientists," says Barbara Rothbaum, associate vice chair of clinical research in psychiatry and director of the Trauma and Anxiety Recovery Program at Emory. "But they are all pieces to the same puzzle. All his work, from molecular to clinical to policy, fits together and starts telling a story." A Howard Hughes Medical Institute investigator, Ressler was recently elected to the Institute of Medicine — one of the highest honors in the fields of health and medicine. He was named a member of a new national PTSD consortium led by Draper Laboratory. And he recently appeared on the Charlie Rose show’s brain series.

Panic attacks seem to tie the fear-related disorders together, he explained on Charlie Rose. Everyone experiences fear, which evolved as a survival mechanism, but it only rises to a clinical level when people are unable to function normally in the face of it. For instance, PTSD includes not only intrusive thoughts, memories, nightmares, and startle responses, but also the concept of avoidance, which may extend to other areas of the individual’s life.

"There’s a patient I’ve seen who was attacked in a dark alley," Ressler shared on the show. "Initially it just felt dangerous to go out at night, but after a while she grew afraid of men and couldn’t go to that part of town. Then she couldn’t leave her house, and finally, her bedroom. The world got more and more dangerous."

(via drhfgordon)

Jul 05

[video]

Jun 28

[video]

Jun 02

[video]

May 28

ucsdhealthsciences:

Detecting Fetal Chromosomal Defects Without Risk Noninvasive sequencing is faster, cheaper and safer for mother and fetus, say researchers
Chromosomal abnormalities that result in birth defects and genetic disorders like Down syndrome remain a significant health burden in the United States and throughout the world, with some current prenatal screening procedures invasive and a potential risk to mother and unborn child.
In a paper published online this week in the Early Edition of PNAS, a team of scientists at the University of California, San Diego School of Medicine and in China describe a new benchtop semiconductor sequencing procedure and newly developed bioinformatics software tools that are fast, accurate, portable, less expensive and can be completed without harm to mother or fetus.  
“We believe this approach could become the standard of care for screening of prenatal chromosomal abnormalities,” said Kang Zhang, MD, PhD, professor of ophthalmology, founding director of the Institute for Genomic Medicine at UC San Diego and a staff physician at the San Diego VA Healthcare System.
The incidence of chromosomal abnormalities – in numbers or structure – is one in 160 live births in the United States, higher in other countries. In China, for example, the rate is one in 60 live births. The effects of these abnormalities, known as aneuploidies, can be severe, from developmental delays and neurological disorders to infertility and death. The incidence rate rises with maternal age, most notably after age 35.
Current diagnoses of fetal aneuploidies often rely upon invasive tests that sample amniotic fluid or placental tissues for fetal DNA that can then be analyzed using a variety of complex and expensive methods, including full karyotyping in which the entire set of chromosomes is viewed microscopically. While highly reliable, these invasive tests may cause infections in the pregnant woman and pose as much as a 1 percent risk of miscarriage and fetal loss. Results are not available for one to two weeks, extending anxiety for families waiting for information.
The new method relies upon massively parallel sequencing of cell-free fetal DNA using a benchtop semiconductor sequencing platform (SSP) called an Ion Torrent sequencer developed by Life Technologies. Cell-free fetal DNA is genetic material from the fetus that circulates naturally and freely in the mother’s bloodstream. It can be obtained through an ordinary blood draw, with SSP analysis achieved in less than four days.
To assess the SSP method, researchers tested 2,275 pregnant women. More than 500 participated in a retrospective analysis, undergoing full karyotyping to establish known chromosomal abnormalities followed by SSP testing. The remainder participated in a prospective study without prior karyotyping, and SSP testing results were then compared to karyotyping results. The sequencing and automated bioinformatics analyses were performed at iGenomics in Guangzhou, China.
“We used the retrospective study to establish the method and the prospective study to validate it,” said Zhang.
In the retrospective study, the researchers found that SSP detected multiple types of chromosomal abnormality with virtually 100 percent sensitivity and specificity compared to full karyotyping.
“To our knowledge, this is the first large-scale clinical study to systematically identify chromosomal aneuploidies based on cell-free fetal DNA using SSP,” said Zhang. “It provides an effective strategy for large-scale, noninvasive screenings in a clinical setting. It can be done in hospitals and outpatient clinics, more quickly and cheaply.”

ucsdhealthsciences:

Detecting Fetal Chromosomal Defects Without Risk
Noninvasive sequencing is faster, cheaper and safer for mother and fetus, say researchers

Chromosomal abnormalities that result in birth defects and genetic disorders like Down syndrome remain a significant health burden in the United States and throughout the world, with some current prenatal screening procedures invasive and a potential risk to mother and unborn child.

In a paper published online this week in the Early Edition of PNAS, a team of scientists at the University of California, San Diego School of Medicine and in China describe a new benchtop semiconductor sequencing procedure and newly developed bioinformatics software tools that are fast, accurate, portable, less expensive and can be completed without harm to mother or fetus.  

“We believe this approach could become the standard of care for screening of prenatal chromosomal abnormalities,” said Kang Zhang, MD, PhD, professor of ophthalmology, founding director of the Institute for Genomic Medicine at UC San Diego and a staff physician at the San Diego VA Healthcare System.

The incidence of chromosomal abnormalities – in numbers or structure – is one in 160 live births in the United States, higher in other countries. In China, for example, the rate is one in 60 live births. The effects of these abnormalities, known as aneuploidies, can be severe, from developmental delays and neurological disorders to infertility and death. The incidence rate rises with maternal age, most notably after age 35.

Current diagnoses of fetal aneuploidies often rely upon invasive tests that sample amniotic fluid or placental tissues for fetal DNA that can then be analyzed using a variety of complex and expensive methods, including full karyotyping in which the entire set of chromosomes is viewed microscopically. While highly reliable, these invasive tests may cause infections in the pregnant woman and pose as much as a 1 percent risk of miscarriage and fetal loss. Results are not available for one to two weeks, extending anxiety for families waiting for information.

The new method relies upon massively parallel sequencing of cell-free fetal DNA using a benchtop semiconductor sequencing platform (SSP) called an Ion Torrent sequencer developed by Life Technologies. Cell-free fetal DNA is genetic material from the fetus that circulates naturally and freely in the mother’s bloodstream. It can be obtained through an ordinary blood draw, with SSP analysis achieved in less than four days.

To assess the SSP method, researchers tested 2,275 pregnant women. More than 500 participated in a retrospective analysis, undergoing full karyotyping to establish known chromosomal abnormalities followed by SSP testing. The remainder participated in a prospective study without prior karyotyping, and SSP testing results were then compared to karyotyping results. The sequencing and automated bioinformatics analyses were performed at iGenomics in Guangzhou, China.

“We used the retrospective study to establish the method and the prospective study to validate it,” said Zhang.

In the retrospective study, the researchers found that SSP detected multiple types of chromosomal abnormality with virtually 100 percent sensitivity and specificity compared to full karyotyping.

“To our knowledge, this is the first large-scale clinical study to systematically identify chromosomal aneuploidies based on cell-free fetal DNA using SSP,” said Zhang. “It provides an effective strategy for large-scale, noninvasive screenings in a clinical setting. It can be done in hospitals and outpatient clinics, more quickly and cheaply.”

May 27

Anonymous said: Hello, just wanted to tell you how much I love your tumblr :) I've officially reached the last page just now and it's been a HUGE inspiration. I'm French, just finishing high school, heading to med school next year (yay!!). Idk if you know this but less than 20% of the students in each univ are allowed into the 2nd year so it's going to be really tough and if I ever feel down I'll run straight to your tumblr and remember why I want to do this and why I love biology :) So thank you. ♥

Oh, wow! Thank you so much! I don’t know what to say… Thank you!

I’m really glad this blog has been able to inspire you. I myself generally try to post things I find interesting. It kinda reminds me of why I do what I do. I hope everything goes well for you in your chosen study path. If you ever want a particular topic covered, send me a suggestion! I’ll try to find something you’ll like.

May 11

pathologycloud:

Thigh MassMale patient in his second decade presents with huge thigh mass.
Touch preparations stained with…View Post

pathologycloud:

Thigh Mass

Male patient in his second decade presents with huge thigh mass.

Touch preparations stained with…

View Post

(via fuckyeahnarcotics)